

St Mary's CE High School Curriculum Map 2023-24 IT and Computing Year 9

	Autumn 1a:	Autumn 1b:	Spring 2a:	Spring 2b:	Summer 3a:	Summer 3b:
CONTENT	Cyber Security: this	Representations: Students	Python Sequences:	Animations:	Physical Computing:	DIT or Computer Science
	unit takes students on	will focus on making digital	This unit introduces	This unit will give	this unit applies and	option
Declarative /	a journey of discovery	media such as sound and	students to how data	students a greater	enhances students	COMPUTER SCIENCE
core /	of the techniques that	images. They will discover	can be represented	understanding of how	programming skills, it	PATHWAY: Networking and
powerful	cybercriminals use to	how media is stored in	and processed in	animation is used to	uses micro:bits to	the Internet
Knowledge –	steal data, disrupt	binary code.	sequences, such as	make media products	show students what	
'Know	systems and infiltrate		lists and strings.	consumed in everyday	their code can do to	DIT PATHWAY: User
What'	systems.			life. Lessons will take	physical devices	Interfaces
				students through the		
				basics of modelling,		
				texturing and		
				animating.		
Skills	Explain the difference	Describe how digital images	Describe what lists are	Use Blender to add,	Describe what	COMPUTER SCIENCE
	between data and	are composed out of	Describe what strings	move and delete	micro:bits are	PATHWAY:
Procedural	information	individual elements	are	objects	List the built-in	To be able explain how
Knowledge –	Identify what happens	Define key terms such as	Trace through	Use Blender to scale	components for	data is sent across a
'Know How'	to data entered online	pixels, resolution and colour	programs that	and rotate objects	output and input	network
	Explain the need for	depth	manipulate lists	Use Blender to use a	Select hardware	To be able to name basic
	the Data Protection Act	Describe how colour can be	Create lists and access	material to add colour	components that are	hardware involved in
	Recognise how human	represented as a mixture of	individual elements	to an object	fit for purpose	networking
	error pose security	red, green and blue	Access individual		Use an IDE to write	How data is sent across a
	risks to data	Describe how an image can	string elements		python programs for	network
	Implement strategies	be represented as a	(characters)		the micro:bit	The role of basic hardware
	to minimise the risk of	sequence of bits	Perform common		Write programs that	involved in networking,
	data being	Calculate the size of a digital	operations on lists		use the micro:bits	such as switches
	compromised through	image	Use variables to keep		built-in output devices	The role of IP addresses,
	human error	Explain how the	track of counts		Write programs that	domain names and DNS
	Define hacking in the	manipulation of digital	Use variables to keep		use the micro:bits	A range of Internet services
	context of	images amounts to	track of sums		built-in input devices	
	cybersecurity	arithmetic operations				DIT PATHWAY:

St Mary's CE High School Curriculum Map 2023-24 IT and Computing Year 9

T					
	dentify strategies to	Define compression and why	Combine features to	Write programs that	The different types of user
	educe brute force	it is necessary	develop solutions to	use the GPIO pins for	interfaces, their uses and
a	attacks	Describe the 'trade-off'	meaningful problems	input and output	who might use them
E	Explain how a DDOS	between size and perceived	Trace through	Write programs that	Different design aspects of
a	attack can impact users	quality for digital images	programs that iterate	exchange messages	the different user
	of online services	Use software to perform	over sequences using	wirelessly	interfaces
E	Explain the need for	basic image editing	for	Test and debug	
t	he Computer Misuse	Explain the function of	Use iteration (for) to	programs for the	
	Act	microphones and speakers	iterate over strings	micro:bit	
1	dentify the common	Define key terms such as		Combine components	
r	malware threats	sample, sampling rate and		to solve meaningful	
E	Examine how different	sample size		problems	
t	ypes of malware cause	Describe how sound can be		Design a physical	
l p	problems for computer	represented as a sequence		computing artifact	
s	systems	of bits		purposefully	
	Compare security	Calculate the size of a digital		Implement the design	
t	hreats against their	sound		of a physical	
l p	probability and	Explain how the		computing project	
ļ p	ootential impact on	manipulation of sounds		Decompose the	
	organisations	amounts to arithmetic		functions of a physical	
E	Explain how networks	operations		computing system	
	can be protected from	Describe the 'trade-off'		Test, revise and refine	
	common security	between size and perceived		the design of a project	
t	hreats	quality for digital sound			
1	dentify the most	Use software to perform			
Ι (effective methods to	basic sound editing			
l r	prevent cyberattacks	Describe and assess the			
		creative benefits and ethical			
		drawbacks of digital			
		manipulation			
Key \	What is the difference	How are digital images	What are lists?	What is a micro:bit?	COMPUTER SCIENCE
Questions b	petween data and	composed?			PATHWAY:
i	nformation?				

St Mary's CE High School Curriculum Map 2023-24 IT and Computing Year 9

	What happens to data entered online? What is the need for the Data Protection Act? What is human error? What is hacking? What is a brute force attack? What is the difference between a DOS attack and a DDOS attack? What is the need for the Computer Misuse Act? What are the different types of malware? How can we prevent cyber security attacks?	What is meant by the following terms: - Pixels - Resolution - Colour depth - Sample - Sampling rate - Sample size How can colour be represented? How do you calculate the size of a digital image? How do you calculate the size of a digital sound? What is compression? Why is compression necessary?	What is the difference between a list and a string? How do you access individual elements of a string or list? How can you use variable to keep count?		What are the built-in functions of a micro:bit? How can we write programs for a micro:bit? How can we combine components of a micro:bit? Why it is important to test and refine your project?	How is data sent across a network? What is the basic hardware needed for a basic network? DIT PATHWAY: What are the different types of user interfaces? What are some of the design principles?
Assessment	Interim assessment with action points to addresses any gaps	Interim assessment with action points to addresses any gaps	Interim assessment with action points to addresses any gaps	Interim assessment with action points to addresses any gaps	Interim assessment with action points to addresses any gaps	Interim assessment with action points to addresses any gaps
	End of Module assessment	End of Module assessment	End of Module assessment	End of Module assessment	End of Module assessment	End of Module assessment